Green approaches to highly selective processes: Reactions of dimethyl carbonate over both zeolites and base catalysts
نویسنده
چکیده
Nowadays available by clean industrial processes, dimethyl carbonate (DMC) possesses properties of nontoxicity and biodegradability which make it a true green reagent/solvent to devise syntheses that prevent pollution at the source. In particular, the versatile reactivity of DMC allows both methylation and carboxymethylation protocols that can replace conventional and highly noxious reagents such as methyl halides (and dimethyl sulfate, DMS) and phosgene. In the field of DMC-mediated methylations, representative examples are the reactions of DMC with CH2-active compounds and primary aromatic amines. In the presence of organic/inorganic bases or zeolites (faujasites) catalysts, these processes proceed with unprecedented selectivity (up to 99 %, at complete conversion) toward the corresponding mono-Cand mono-N-methyl derivatives, a result hitherto not possible with conventional alkylation reagents. In the case of ambident amines (e.g., aminophenols, aminobenzyl alcohols, aminobenzoic acids, and aminobenzamides), the unique combination of DMC and zeolites allows not only a very high mono-N-methyl selectivity, but also a complete chemoselectivity toward the amino group. The other nucleophilic functionalities (OH, CO2H, CH2OH, CONH2) are fully preserved from alkylation and/or transesterification reactions, usually observed over basic catalysts.
منابع مشابه
Ionic liquids made with dimethyl carbonate: solvents as well as boosted basic catalysts for the michael reaction.
This article describes 1) a methodology for the green synthesis of a class of methylammonium and methylphosphonium ionic liquids (ILs), 2) how to tune their acid-base properties by anion exchange, 3) complete neat-phase NMR spectroscopic characterisation of these materials and 4) their application as active organocatalysts for base-promoted carbon-carbon bond-forming reactions. Methylation of t...
متن کاملReusable Silica supported Perchloric acid and potassium bisulphate as green catalysts for thiocyanation of aromatic compounds under solvent free conditions
Reusable silica supported perchloric acid and potassium bisulphate have been prepared and explored as green catalysts for thiocyanation of aromatic compounds under conventional and solvent free microwave assisted conditions. The microwave assisted protocol exhibited remarkable rate accelerations and offered selective thiocyanation of aromatic and hetero aromatic compounds in good yields. Reacti...
متن کاملPreparation of H-ZSM-5 Nano-Zeolite Using Mixed Template Method and its Activity Evaluation for ethanol to DME Reaction
H-ZSM-5 nano-zeolites were synthesized by hydrothermal method using tetrapropylammonium hydroxide (TPAOH) as a template in the presence of various TPABr concentrations. The effect of different TPABr/TPAOH molar ratios was studied on the catalytic performance of dehydration of methanol to dimethyl ether (DME) in a fixed bed reactor under the same operating conditions (T=300°C, P=1 atm, and WHSV=...
متن کاملExamples of Organic Reactions on Zeolites: Methanol to Hydrocarbon Catalysis
Solid (heterogeneous) catalysts (1–4) are favored in industrial processes because they eliminate the need to separate the catalyst from the products. Heterogeneous catalysts can be solid acids, bases, supported metals, mixed metal oxides, or multifunctional materials. Commercial processes based on solid acids outnumber all others, and zeolites (and closely related materials) are usually the sol...
متن کاملConversion of Methanol on CuO/H-MOR and CuO/H-ZSM-5 Catalysts.
This paper deals with maximizing dimethyl ether (DME) production from methanol due to its industrial importance as a future diesel fuel. The high acidity and the micro-porous structure of the catalysts encouraged this reaction. Catalysts containg 6% CuO supported on H-ZSM-5 and H-MOR zeolites give high activities for DME production. The 6% CuO/HMOR is more selective for DME production, while th...
متن کامل